Programming for modeling and simulation
With S. DESLAURIERS-GAUTHIER
Master Université Côte d'Azur MSc Modeling for Neuronal and Cognitive Systems (AIQMOD13).
Some Mathematical Methods for Neurosciences
Course Presentation 2025–2026
Master M2 UPMC and Master M2 MVA
- 📚 Overview
- Résumé
- 📘 Bibliographie sommaire (A few references)
- 📍 Date et lieu des cours et des TPs ( When and where)
- 🗓️ Schedule
- Oct 16 — Lecture 1 (Q. Cormier)
- Oct 23 — Lecture 2 (Q. Cormier)
- Oct 30 — Lecture 3 (R. Veltz)
- Nov 6 — Lecture 3 (R. Veltz)
- Nov 13 — Lecture 4 (Q. Cormier)
- Nov 20 — Lecture 5 (R. Veltz)
- Nov 27 — Lecture 6 (R. Veltz)
- Dec 4 — Lecture 7 (Q. Cormier)
- Dec 11 — Lecture 8 (Q. Cormier)
- Dec 18 — Lecture 9 (Q. Cormier)
- 📝 Exam Info
📚 Overview
We present a number of mathematical tools that are central to modeling in neuroscience. The prerequisites to the course are a good knowledge of differential calculus and probability theory from the viewpoint of measure theory. The thrust of the lectures is to show the applicability to neuroscience of the mathematical concepts without giving up mathematical rigor. The concepts presented in the lectures will be illustrated by exercise sessions.
Introduction to dynamical systems: orbits and phase portraits, invariant manifolds, center manifold in finite dimension.
Introduction to bifurcation theory: dimension 1 (saddle-node, transcritical, pitchfork), dimension 2 (Hopf), center manifold, normal form, equivariant bifurcations.
Applications: single spiking neuron dynamics, Turing mechanism for cortical pattern formation, geometric visual hallucinations.
Mesoscopic models of visual cortical areas: anatomical structure of the visual cortex (V1), functional architecture of V1, neural fields models.
Neuronal models: point Hodgkin-Huxley model, simplified models, synaptic models, spatial models.
Importance of noise: Brownian motion, stochastic differential equations, application to neurons.
Résumé
Nous présentons dans ce cours quelques outils mathématiques qui interviennent de manière systématique dans de nombreux problèmes de modélisation en neurosciences. Les prérequis sont une bonne connaissance du calcul différentiel et du calcul des probabilités dans le cadre de la théorie de la mesure. Sans trahir la rigueur mathématique, le cours s'efforcera de mettre en valeur l'applicabilité aux neurosciences des concepts présentés. Le cours sera complété par des séances d'exercices.
Introduction aux systèmes dynamiques: orbites et portraits de phases, variétés invariantes, équivalence de systèmes dynamiques, classification topologique des équilibres, stabilité structurelle, variété centrale en dimension finie.
Introduction à la théorie des bifurcations: dimension 1 (noeud-selle, transcritique, fourche), dimension 2 (Hopf), variété centrale, forme normale, bifurcations équivariantes.
Applications:
Modèles mésoscopiques de certaines structures corticales: structure anatomique du cortex visuel (aire V1), architecture fonctionnelle de V1, modèles de champs neuronaux.
Sensibilité à l'orientation des contours visuels, formation de structures corticales et hallucinations visuelles.
Modèles de neurones: le modèle de Hodgkin-Huxley sans espace, modèles simpliés, modèles de synapses, modèles spatiaux.
Le rôle du bruit: mouvement Brownien, équations différentielles stochastiques, application aux neurones.
📘 Bibliographie sommaire (A few references)
Kandel, Eric R., éd. Principles of neural science. 5th ed. New York: McGraw-Hill, 2013.
Byrne, John H., Ruth Heidelberger, et Melvin Neal Waxham, From molecules to networks: an introduction to cellular and molecular neuroscience, 2014.
Gerstner, Wulfram, Werner M. Kistler, Richard Naud, et Liam Paninski. Neuronal dynamics: from single neurons to networks and models of cognition. Cambridge University Press, 1. 2014.
Koch, Christof. Biophysics of Computation: Information Processing in Single Neurons. Oxford Univ. Press, 2004.
Bressloff, Paul C. Waves in Neural Media, Springer, 2014.
Eugène Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and bursting, MIT Press, 2006.
G. Bard Ermentrout and David H. Terman, Mathematical Foundations of Neuroscience, Springer, 2010.
Sterratt, David, Principles of computational modelling in neuroscience. Cambridge University Press, 2011.
Meiss, Differential Dynamical Systems. SIAM, 2007
Yuri A. Kuznetsov, Elements of applied bifurcation theory.
Haragus, Mariana, et Gerard Iooss. Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems. London: Springer London, 2011. http://link.springer.com/10.1007/978-0-85729-112-7.
Pierre Brémaud, Point Processes and Queues, Springer Series in Statistics, 1981.
📍 Date et lieu des cours et des TPs ( When and where)
📍 ENS Saclay, Room 2E30 (Bâtiment Sud-Ouest, 2ᵉ étage) 🕒 Lectures: Thursdays 13:30–16:30 🧪 Tutorials: Thursdays 16:45–18:45
🗓️ Schedule
Oct 16 — Lecture 1 (Q. Cormier)
Saclay, à l’ENS, dans la salle 2E30 (bâtiment Sud-Ouest - 2è étage)
Lecture Overview
In this lecture, we introduce the dynamics of isolated random spiking neurons. We introduce the formalism of point processes with stochastic intensity.
Introduction to random spiking neurons, motivations
Introduction to stochastic processes: stopping times, martingales and predictable processes
Point processes with stochastic intensity
The Poisson process with inhomogeneous deterministic rate
The Integrate & Fire model: description of the interspikes and the renewal equations
Oct 23 — Lecture 2 (Q. Cormier)
Saclay, à l’ENS, dans la salle 2E30 (bâtiment Sud-Ouest - 2è étage)
Oct 30 — Lecture 3 (R. Veltz)
Location: Saclay, à l’ENS, dans la salle 2E30 (bâtiment Sud-Ouest - 2è étage)
This document contains basic results useful for the lectures. One may also look at Meiss, Differential Dynamical Systems. SIAM, 2007.
Towards models of isolated neurons.
Introduction to the Central Nervous System CNS
Models of a single neuron ( Hodgkin-Huxley )
Basics of dynamical systems (existence theorem, stability)
Introduction to planar models of single neurons (Morris–Lecar , FitzHugh-Nagumo, Integrate and Fire, Exponential Integrate and Fire...)
Nov 6 — Lecture 3 (R. Veltz)
Location: Saclay, à l’ENS, dans la salle 2E30 (bâtiment Sud-Ouest - 2è étage)
Dynamics of isolated neuron.
Introduction to local bifurcation theory (codim 1)
Examples of bifurcations in neural models of single point neuron
Nov 13 — Lecture 4 (Q. Cormier)
Nov 20 — Lecture 5 (R. Veltz)
Coupling the neurons together.
Synaptic transmission, learning in Hippocampus
Normal form theory
Delayed Differential Equations
Applications to models of populations of neurons
Nov 27 — Lecture 6 (R. Veltz)
Model of space dependent population of neurons.
Normal form theory
Models of visual cortex and their analysis
Dec 4 — Lecture 7 (Q. Cormier)
Dec 11 — Lecture 8 (Q. Cormier)
Dec 18 — Lecture 9 (Q. Cormier)
📝 Exam Info
🗓️ TBA 🕒 14:00–17:00 📍 Room 1N82, ENS Saclay 🧾 Allowed: Up to 4 A4 pages of handwritten notes